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Abstract

Truss structures composed of members that work exclusively in tension or in compression
appear in several problems of science and engineering, e.g., in the study of the resisting mech-
anisms of masonry structures, as well as in the design of spider web-inspired web structures.
This work generalizes previous results on the existence of cable webs that are able to support
assigned sets of nodal forces under tension. We extend such a problem to the limit analysis of
compression-only ‘strut nets’ subjected to fixed and variable nodal loads. These systems pro-
vide discrete element models of masonry bodies, which lie inside the polygon/polyhedron with
vertices at the points of application of the given forces (‘underlying masonry structures’). It is
assumed that fixed nodal forces are combined with variable forces growing proportionally to a
scalar multiplier (load multiplier), and that the supporting strut net is subjected to kinematic
constraints at given nodal positions.

1 Introduction

Force networks are frequently employed to describe the mechanical response of web-like structures
and discrete element models of continuous bodies. This is, e.g., the case of bodies with a unilateral
mechanical response, by which we mean that they exhibit an elastic- or rigid-type behavior charac-
terized by the development of no-tension or no-compression stress fields (admitting only negative or
positive eigenvalues of the stress tensor, respectively) [1, 3, 4]. The ‘master safe theorem’ formulated
by Heyman in his seminal work on the statics of masonry structures [5] states that a no-tension
masonry arch is stable if any thrust line in equilibrium with the external loads can be found within
the masonry. A rigorous mathematical framework for the limit analysis of no-tension materials has
been developed by Del Piero [1] and Šilhavý [2], among others, in appropriate function spaces. The
limit analysis of solids and structures is a methodology for detecting the collapse value of given
loads, without studying the evolution of the equilibrium problem along the loading history [6]. It
was originally formulated for bodies made of perfectly plastic materials [8, 7], and has been gener-
alized by Del Piero [1] to bodies composed of normal linear elastic materials. The latter include
no-tension materials, which share with perfectly plastic materials the presence of a convex set of
admissible stress fields, and a normality rule of inelastic deformations with respect to such a do-
main. In the case of no-tension materials, plastic strains are replaced by fracture strains, which may
occur when the stress field lies on the boundary of the admissible stress domain (see also Giaquinta
and Giusti [9], Angelillo et al. [10]). The results presented in [1, 2] prove that the maximum of
all statically admissible multipliers gives a collapse multiplier, which is associated with a collapse
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mechanism of the structure. According to the notation introduced by Šilhavý in [2] for no-tension
bodies, a loading condition is strongly compatible if any square integrable, compression-only stress
fields exist that are in equilibrium with the given body and surface forces (through the principle of
virtual work). A loading condition is instead weakly compatible if any compression-only stress fields
exist, represented by measures in equilibrium with the given forces. The latter can exhibit singular
parts that are concentrated on surfaces (3D case) or lines/curves (2D case).
Structural engineering approaches to the limit analysis of masonry bodies have been carried out
by different authors, through the search of compression-only truss structures (‘strut nets’), which
satisfy the equilibrium equations with the given loads, and are fully contained within the body of the
masonry [11, 12, 13, 14, 15, 16]. The forces carried by such structural networks can be regarded as
singular stress fields statically admissible with the given loads, according to the analysis presented
in [2]. In the 2D case, use has been made of polyhedral Airy stress functions to generate admissible
force networks [17, 18, 19, 20]. A mirrored, tension-only response is exhibited by spider orb webs
loaded in the large displacement regime [21, 22]. The outstanding mechanical properties of such
webs have encouraged several researchers to investigate the design and manufacturing of bioinspired
spider-web-like membranes and metamaterials, over recent years [24, 23, 25].

The present work generalizes the results presented in [3, 4] regarding the existence of cable
webs under tension that can support a given set of nodal loads. The generalization is multi-fold.
First, we consider compression only force networks forming strut net models of masonry structures,
which support a combination of fixed forces and variable forces applied at given nodes, with the
latter growing proportionally to a scalar multiplier λ. We assume that the members forming the
supporting strut nets S do not undergo local buckling, due to a rigid response of the material in
compression. Available literature results have shown that buckling effects are actually negligible
in the presence of sufficiently small slenderness ratios (see [26] and references therein). A second
generalization of the research presented in [3, 4] consists of admitting that the movement of selected
nodes of S can be restrained by external supports. The third and final generalization leads us to
search for the extreme values of λ in correspondence of which the applied loads can be supported
by a compression-only structure. Under suitable regularization (or integrability) conditions of the
singular stress fields associated with such limit load multipliers, one can regard these quantities as
lower bounds on the magnitude of the collapse load multiplier for the underlying masonry structures
[1, 2]. We focus our attention on the equilibrium problem of strut nets whose boundary is a
convex domain in two- or three-dimensions. We start presenting the strut net problem in section
2. Next, we address the formulation of linear programming procedures for problems dealing with
simply-connected domains (showing no holes or inclusions), as well as multiply-connected domains
associated with the presence of polygonal ‘obstacles’ (section 3). The effectiveness and accuracy
of the given procedures are illustrated by examining a parade of numerical results dealing with
benchmark examples of masonry structures. The analyzed structures are subject to fixed vertical
forces, and horizontal forces that can grow proportionally to a load multiplier λ (section 4) [27]. Such
a loading condition is aimed at reproducing the effects of wind forces or seismic loading, through
an equivalent static analysis method [27]. We end by drawing concluding remarks and discussing
directions for future work in section 5.

2 The strut net problem

Let us begin by reformulating the ‘spider web problem’ recently studied in [3] to strut nets formed
by members supporting compression-only forces: given a set of N balanced forces f1, f2, ... , fN at
N prescribed points x1, x2, ..., xN in d-dimension (d = 2, 3), when does there exist a supporting
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strut net S under compression, which connects the terminal points X = (x1,x2, ...,xN ), and which
carries axial forces in equilibrium with the given loading F = (f1, f2, ..., fN )? The solution provided
in Ref. [3] shows that it suffices to examine webs when no internal nodes exist, which means that
one can easily address the query with linear programming [3]. Following the argument in [4] and
going one internal junction at a time, we may inductively replace the struts that are connected to
this internal junction with a set of struts that pairwise join the nodes that are connected to the
one they are replacing (figure 1). In a sense, this is similar to the "star-delta" transformation in
resistor networks, though our result only applies to the stress and not to the elastic response of
spring networks where one also monitors the displacement. A more sophisticated argument than
this inductive one shows that the result holds true even if one starts with a continuum of struts [3].

Figure 1: Removal of one internal node at x0 that is linked to n other nodes at x1, x2,..., xN . If Pj0

denotes the compression force in the strut from x0 to xj , then one can remove node x0 and replace
it with a net in which the surrounding nodes are pairwise connected and have compression forces
Pij = ‖xi − xj‖cicj (

∑
k ck )−1, where cj= ‖ xi-xj ‖ −1 P0j [4]. Note that the examined structure

is in three-dimensions and that the struts x1− x3 and x2− x4 do not touch each other. If a pair of
these nodes were already connected, one should add this tension to the existing tension. Here, ‖x‖
notes the length of x. Repeating this procedure allows one to remove all internal nodes. (Online
version in color.)

The limit-analysis formulation of the above problem is as follows. Let uj denote the displace-
ment vector of xj , and let U = (u1,u2, ...,uN ) denote the global vector collecting all the nodal
displacements of the given points. We introduce the following set of nodal displacements

A = {U | (ui − uj) · (xi − xj) ≤ 0, 1 ≤ i < j ≤ N} (1)

and examine the loading path F(λ) = G + λQ, where G = (g1,g2, ...,gN ) is a vector of fixed
nodal forces; Q = (q1,q2, ...,qN ) is the vector of proportional loads that defines the ‘shape’ of the
examined incremental loading process in (Rd)N , with origin at G; and λ is a scalar quantity referred
to as the loading multiplier. We say that λ is statically admissible if there exists a supporting strut
net for F(λ). Assuming that a supporting strut net for the fixed forces G exists, it is easy to prove
that the admissible loading multipliers are such that it results

sup
U∈A

(G + λQ) ·U ≤ 0, (2)
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and that these multipliers form a suitable interval (λ−, λ+) of R. Such a conclusion is a straight-
forward generalization of Theorem 1.1 of [3]. Consider indeed that the set of all the admissible
loadings F that are applied to X forms a convex cone C in (Rd)N [3]. Intersection points of F(λ)
with C give the limit load multipliers λ− and λ+ (see, e.g., the example in Fig. 2).

(f1, 0, 0)

(0, f2, 0)

(0, 0, f3)

𝐆𝐆 + 𝜆𝜆−𝐐𝐐
𝐆𝐆 + 𝜆𝜆+𝐐𝐐

𝐆𝐆

Figure 2: Loading path and cone of the admissible loadings for d = 2 and N = 3. The figure is
schematic as it is embedded in a 6-th dimensional space, and due to equilibrium of forces the cone
lies in a hyperplane, but otherwise has an arbitrarily shaped convex cross section. (Online version
in color.)

As we have already noted, if one wants a strut network under compression that is as robust
as possible to different loadings, then all of this network’s terminals should be connected pairwise.
Internal nodes are not needed. An algorithmic approach to such a problem is presented in section
3(a), assuming that selected nodes may be subject to kinematic constraints. One observes, however,
that internal nodes are needed if one wants all the struts to be contained in a desired region, which
avoids selected ‘obstacles’. We will discuss such a problem in two-dimensions in section 3(b), making
use of a stress function formulation of the equilibrium problem.
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3 Linear programming procedures

The present section presents two linear programming (LP) procedures for the limit analysis problem
of strut nets in two- and three-dimensions. The first LP algorithm deals with a strut net that covers a
compact domain in two- or three-dimensions without holes and/or inclusions. The second procedure
instead refers to a 2D strut net that supports external forces at the boundary of a convex polygon
and avoids an arbitrary number of polygonal obstacles [30].

3.1 Compact domains

Let us consider a strut net which consists of a complete net formed by all the pairwise connections
of a set of N nodes. Such nodes are at the vertices of a compact and convex polygon/polyhedron.
We write the equilibrium problem of S into the following matrix form

AP = G + λ Q (3)

where A is the equilibrium matrix of the complete net (refer, e.g., to [31, 32] for the expression of
such a matrix), and P = (p1,p2, . . . ,pn) is the vector of the axial forces carried by the members of
S. We let n denote the total number of applied external forces, and letm denote the total number of
the pairwise connections of the points of applications of such forces. We account for the presence of
constraints setting selected nodal displacements of S to zero, by dropping the equilibrium equations
associated with such degrees of freedom into problem (3) (see, e.g., [38], page 75). Assuming that
(3) admits solutions for λ = 0; post-multiplying both members of such an equation by Q; and
solving for λ, we obtain

λ =
1

Q2
AP ·Q − 1

Q2
Q ·G (4)

with Q2 = Q ·Q, (·) denoting the symbol of the scalar product between vectors.
We search for the first limit load multiplier λ+ of the proportional loads F by solving the

following LP problem

maximize
P

λ = C̄ ·P − 1

Q2
Q ·G

subject to
{

ĀP = Q̄
lb ≤ P ≤ ub

, (5)

Here, we have set

C̄ =
1

F 2
ATF; Ā = A − Q ·A

Q2
Q; Q̄ = G − Q ·G

Q2
Q (6)

where AT denotes the transpose of A. In equation (5), due to the assumption of a rigid-no-tension
behavior of the material with infinite compression strength, lb is a vector with all −∞ entries,
while ub is a vector with all 0 entries. By turning problem (5) into a minimization problem, we
next obtain the second collapse multiplier λ−. The vector of axial forces P that corresponds to
prescribing λ = λ+ (or λ = λ−) in the limit load strut net is given by the solution of the LP
problem (5).

3.2 Obstacle problem in 2D

We hereafter present a generalization of a result given in Ref. [30], which is aimed at handling limit
analysis problems. We search for a planar strut net, which supports a system of N external forces
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applied at the vertices of a convex polygon Ω, and avoids a number s of polygonal obstacles O1, O2,
. . .Os. The generic obstacle Oq is the convex hull of N(q) points (yq

1,y
q
2, . . . ,y

q
N(q)) and represents

a region not accessible to the strut net (e.g., the region underneath an arch; a hole to be drilled in a
masonry structure; an inclusion in the design domain formed by a non-reactive material or a void;
etc.). As in the previous case, we assume that the external forces may be either active or reactive.
The active forces are associated with the set I ⊂ {1, . . . , N}, while the reactive forces are associated
with the complementary subset K := {1, . . . , N} \ I.

A straightforward generalization of Theorem 2 of Ref. [30] leads us to identify the load multiplier
of the loading path F(λ) = G+λQ with the objective function of the following linear programming
problem

R⊥(wi+1 −wi) = −(gi + λqi), for i ∈ K,
w1 = 0, d1 = 0,

wi+1 · xi + di+1 = wi · xi + di, for 1 ≤ i ≤ n,
wj · xi + dj ≥ wi · xi + di, for i 6= j in {1, . . . , N},
v(q) · xi + c(q) ≥ wi · xi + di, for 1 ≤ i ≤ N , 1 ≤ q ≤ s,
wi · y(q)

p + di ≥ v(q) · y(q)
p + c(q), for 1 ≤ i ≤ N , 1 ≤ q ≤ s, 1 ≤ p ≤ N(q),

v(r) · y(q)
p + c(r) ≥ v(q) · y(q)

p + c(q), for q 6= r in {1, . . . , s}, 1 ≤ p ≤ N(q). (7)

Here, R⊥ =

(
0 −1
1 0

)
is the rotation matrix by an angle Π/2; wi and di respectively are a vector

and a scalar that identify the tangent plane to the strut net function φ along the generic segment
of the boundary of Ω; vi and ci represent a vector and a scalar that define the value of φ over the
generic obstacle [30]. The strut net function φ is a polyhedral Airy stress function that generates
the axial forces pi carried by the limit load strut net. Upon casting problem (7) in the form of a
maximization or a minimization problem, one computes λ+ and λ−, respectively.

4 Numerical results

We hereafter present a parade of numerical applications of the LP procedures presented in the pre-
vious section, which deal with strut net models of masonry walls and arches. We analyze structures
subjected to fixed vertical forces and variable horizontal forces, with the latter growing through a
scalar multiplier λ from a base value. In most cases, the base value of the horizontal forces is set
equal to the resultant of the vertical forces, so that λ can be identified with the spectral acceleration
that describes an equivalent, static seismic loading condition of the structure [27]. For the sake of
simplicity, we will restrict our attention to loading paths of the form: F(λ) = G + λQ with λ ≥ 0
[1, 2], by searching for the limit load multiplier λlim = λ+. It is easily verified that it results λ− = 0
for all the examples that follow.

4.0.1 Shear walls

Let us consider first a rectangular wall serving as a supporting element of a masonry building,
which exhibits horizontal span L and height h. With the aim of replicating the example presented
in section 3.2 of Ref. [19], we assume h/L = 2/3, and apply a distributed load q to the top edge
of the middle-plane of the wall, and a horizontal (shear) force F = λqL to the right corner of the
same edge (figure 3).
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A first simulation examines the lumping of the vertical load q at seven nodes, and introduces
a mirrored discretization of the bottom edge of the middle-plane of the wall, which is formed by
fixedly constrained nodes (complete web formed by the 91 pairwise connections of the 14 nodes
shown in figure 3a; limit load strut net formed by the 12 ‘active’ connections shown in figure 3b).
The LP problem (5) returns the limit load multiplier λlim = λ+ = 1/3, which coincides with the
collapse multiplier of the continuum model of the wall examined in [19]. The latter is associated
with a rigid-body rocking mechanism of the wall about the bottom-right corner (see also [16]). The
strut net corresponding to the limit load of S is illustrated in figure 3b. It clearly results in λ− = 0,
since it is easily proven that a horizontal force applied to the top-left corner of the wall and pointing
leftward cannot be supported by any no-tension force network connecting the given points. On the
other hand, we would find λ− = −1/3 and λ+ = 0 for the loading condition with the same vertical
forces and a horizontal force applied to the top-right corner of the wall, which points rightward. A
more refined discretization of the wall under examination is obtained by lumping the distributed
load q at twenty nodes of the top edge, and introducing and equal number of fixedly constrained
nodes at the bottom edge (complete web formed by the 780 pairwise connections of the 40 nodes
shown in figure 3c). Also in this case the LP procedure returns λlim = 1/3, and one notes that the
limit load strut net is formed by a set of 38 active connections that include 18 top horizontal struts
and 20 ‘rays’ converging to the bottom-right corner of the wall (figure 3d).

We now focus our attention on a different shear wall problem, which is inspired by the experi-
mental study on dry stone walls reported in [33] (Fig. 4). We analyze a dry-joint stone wall with
1,000 mm width, 1,000 mm height and 200 mm thickness, which is subject to self-weight (25 kN/m3

specific weight), a supplementary vertical load of 30 kN is applied to the top edge of the wall, and a
horizontal load acting on the same edge. Such a shear load increases until it produces the collapse
of the structure. A strut net model of the current example is obtained by introducing a 10×12 grid
of nodes over the mid-section. The examined grid is formed by a first row of ten fixedly constrained
nodes at the bottom edge of the wall; a second row of ten nodes at 50 mm height from the bottom;
nine subsequent rows of ten nodes with 100 mm vertical spacing; and a row of ten nodes placed
along the top edge of the wall. The complete web is formed by the 7,140 pairwise connections of
these nodes. The self-weight is lumped at all the nodes of the above grid (0.05 kN in each node),
while the supplementary vertical load is lumped at the ten nodes of the top edge (3 kN in each
node). Finally, the horizontal force F = λ is applied to the top-left corner of the same edge. The
LP procedure of section 3.1 predicts a limit load multiplier λlim = 14.417 kN, which is supported by
the strut net formed by 157 active connections shown in figure 4a. On employing the loop reduction
procedure that is detailed in [3] (see also section 2), we were able to reduce the strut net of figure
4a to the simplified net that is illustrated in figure 4b (the step-by-step loop reduction procedure is
illustrated by Movie S1 in the supplementary materials). Experimental tests carried out by Lorenco̧
et al. [34] on physical samples highlighted the onset of sliding displacements between the blocks un-
der a value of the horizontal force approximately equal to 14-15 kN [33] (the crack pattern reported
in [34] is shown in figure 4c). It is worth noting that the no-tension model of masonry structures
assumes that sliding failure cannot occur within the material [1, 5]. It is therefore reasonable that
the strut net model analyzed in this study is able to reproduce the experimental results reported in
[34, 33] as long as sliding effects are negligible, due to the gravity-induced compaction of the blocks
[5]. The presence of struts above the main diagonal of the wall in figure 4b is consistent with the
crack pattern observed during the experimental tests presented in [34, 33] (compare figures 4b,c).
It is easily recognized that the system of vertical forces corresponding to setting λ = 0 is statically
admissible for each of the shear walls examined in the present section. Such a loading condition is
indeed supported by strut nets with vertical members passing through the points of application of
the active and reactive forces present on the opposite edges of the wall.
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4.1 Walls with openings

Figure 5 shows strut net models of a one-story masonry wall with a central opening, which features
overall length L = 2b1 + b2 = 3, overall height H = h1 +h2 is 3, opening width b1 = 1, and opening
height h1 = 2 equal to 2 (in abstract units).
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The wall is loaded with a uniform vertical load q on the top edge, and a horizontal force F = λqL
applied to the top-right corner and directed inside the wall. Let us introduce the dimensionless
variables ξ = b2/b1 = 1, and ζ = h1/h2 = 2 as in [35]. Reaction points were introduced at the base
of the two piers placed on the sides of the opening, and the latter was modeled as an obstacle in
the sense of the LP procedure illustrated in section 3.2. By lumping the ‘active’ load distribution q
in correspondence to a variable number of points na uniformly spaced on the top edge, introducing
nd = 11 uniformly spaced reaction points at the base of each pier, and using the above procedure,
we obtained the limit load multipliers shown in figures 5(b,d,f ). Strut nets supporting the pure
vertical loading condition (λ = 0) are instead shown in figures 5(a,c,e). The existence of such
strut nets is in agreement with the compatibility condition ζ ≤ 4ξ(1 + ξ) obtained in [35]. For
growing values of na, one observes that the multipliers λlim associated with the strut nets depicted
in Figs. 5(b,d,f ) converge from below to the collapse multiplier λc = 0.35911 obtained in [35]
for the wall under examination. This is not surprising, since the forces carried by such strut nets
describe stress fields represented by measures that are in equilibrium with the given forces. One can
average such measure stress fields, using, e.g., the averaging procedure illustrated in [17, 36] or the
integration procedure given in [2], to obtain square integrable, no-tension stress fields that are in
equilibrium with the loading condition (q, F = λqL) at the continuum level (regularized stress fields).
A regularization procedure of the singular stress field shown in figure 5(b) is graphically illustrated
in figure 6 (assuming q = 0.3 and λlim = 0.35833, we applied a horizontal force F = 0.3225 to
the top-right corner of the wall). The panel (a) of such a figure shows two partitions of the region
placed above the arched portion S̃ of the overall strut net S: a primal triangulation, and dual mesh
formed by a centroidal Voronoi tessellation of the vertices of the primal mesh. Figure 6(b) illustrates
the density plot of the T22 component of the regularized stress field T̃, which is obtained making
use of the lumped stress method presented in [17]. The stress measures (or axial forces) carried
by the struts of S are averaged over the polygonal cells of the dual mesh, through the procedure
described in [17, 36]. T̃22 = −q in all the dual cells that do not intersect S̃. Differently, one
observes that the quantity |T̃22| reaches values much greater than q in correspondence to the dual
cells that intersect S̃. Such results are aligned with the continuous level solution of the wall problem
under examination, which gives the stress field T as the superimposition of a uniform stress field
Tr = −qe2⊗e2 (⊗ denoting the dyadic product symbol) and a singular stress field Ts concentrated
on S̃ [35]. We conclude that the multipliers λlim shown in Figs. 5(b,d,f ) are strongly compatible
with the examined loading condition, and therefore provide lower bound estimates of λc [2]. The
results in Fig. 5 clearly illustrate the convergence properties of the sequence of measure stress fields
to the collapse stress field given in [35].

The successive figure 7 shows strut net models of a masonry wall with two openings loaded by
two different combinations of vertical and horizontal forces. The overall length L of the wall is 5;
the height H is 3, and the openings are uniformly spaced with width b1 equal to 1 and height h1
equal to 2 (as in the previous case). Eleven reaction points were introduced at the bottom edges of
each pier (nd = 11). The example illustrated in figures 7(a,b) examines a loading condition similar
to that examined in figure 5, which shows a uniformly distributed load q applied along the entire
span L of the top edge of the wall, and a single horizontal force F = λqL applied to the top-right
corner. By setting λ = 0; lumping the load q in correspondence to na = 81 points, and employing
the LP procedure given in [30], we obtained the strut net shown in figure 7(a), which proves that
such a loading condition is supported by the wall. Proceeding to examine the limit analysis problem
in presence of the horizontal force F = λqL, we employed the LP procedure of section 3.2 to obtain
the limit load multiplier λlim = 0.45, and the limit load strut net displayed in figure 7(b).
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The example shown in figures 7(c,d) refers to the wall loaded by three uniformly distributed
loads with intensity q applied on top of the piers, and by three horizontal forces F = λqb1 applied
to right edges of the piers. By lumping the ‘active’ load distribution q in correspondence to na = 11
points and using such a procedure, we obtained the limit load multiplier λlim = 0.1667 and the limit
load strut net displayed in figure 7a. An identical value of the limit load multiplier was obtained
by setting na = 21, as shown in figure 7b. These results are in agreement with the collapse load
multiplier λc = 1/6 predicted by the kinematic approach to the limit analysis of masonry structures
in correspondence to a ‘frame-type’ collapse mechanism (see, e.g., [37], and references therein). The
loading condition with λ = 0 is supported by strut nets showing vertical struts running along the
piers.

4.2 Arched structure

Figure 8a shows a masonry arch that is loaded by a uniform vertical loading q on the top edge. We
set L/H = 5/3 and analyze different discretizations of the vertical load condition, which correspond
to lumping q at variable numbers na of nodes uniformly spaced on the top edge. Each pier is
constrained by nd (potential) reaction points at its base. Figures 8b-e show the strut nets that were
obtained through the LP procedure given in [30], by letting na = nd vary from 21 to 201. It is seen
that the arch supports the examined vertical loading condition.

Figure 9a illustrates the limit analysis problem obtained by applying a horizontal force F = λqL
to the top-right corner of the arch. We employed the LP procedure of section 3.2 to solve such a
problem, by modeling the region underneath the arch as an obstacle. The solutions obtained for
the same values of na = nd analyzed for the vertical load condition are presented in figures 9b-e.
One observes that the LP procedure returns estimates of the limit load multiplier that asymptot-
ically converge from below to λc = 0.3084. This is the collapse multiplier obtained through the
continuum-level approach presented in section 3.3 of Ref. [19], which is illustrated by Movie S2 in
the supplementary materials. Making use of a regularization procedure similar to that illustrated
in section 4.1, it is possible to average the singular stress fields associated with the strut nets shown
in figures 9(b-e), so as to generate square integrable stress fields in equilibrium with the loading
condition of figure 9(a).

5 Concluding remarks

We have presented analytic and numerical results for the limit analysis problem of strut net dis-
cretization of masonry bodies, which are described through the rigid-no-tension constitutive model
by Heyman [5]. Linear programming algorithms have been formulated to numerically solve prob-
lems dealing with simply- and multiply-connected domains. The predictions of such procedures
have been validated against available results in the literature that benchmark examples of masonry
walls and arches. Under suitable regularization conditions, the measure stress fields and the limit
load multipliers predicted for strut net models of masonry structures can be strongly admissible
for the underlying masonry structures, thus providing lower bounds of the collapse load multiplier
λc at the continuum level [2]. A considerable part of the available results for the limit analysis of
masonry structures is achieved through kinematic approaches (see, e.g., [16] and references therein).
When the above regularization assumptions are matched, the results presented in this study make
it possible to complement the upper bound predictions of kinematic approaches with rigorous and
easy-to-compute lower bounds of the collapse multipliers. Having upper and lower bounds of λc
available, it is possible to predict such a quantity with sufficient accuracy, which is of paramount
importance in technical applications [16].
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We leave the issue of the 3D generalization of the obstacle problem presented in section 3.2 to
future work. We anticipate that such an extension, perhaps achieved through the use of Beltrami
stress functions or nonlinear mathematical programming procedures [38], will not be straightforward
and will pose complex analytic and numerical challenges.
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Two movies are provided as supplementary material. Movie S1 illustrates the step-by-step loop re-
duction procedure for the example depicted in figure 4b-c, while Movie S2 illustrates the continuum-
level solution for the limit analysis problem in figure 9,

Supplementary materials

Movie_S1.mp4

Caption for Movie S1

A strut net describing the internal resisting structure of a shear wall made of dry stone masonry is
simplified via the loop reduction procedure illustrated in [3].

Movie_S2.mp4

Caption for Movie S2

Continuum-level solution for the limit analysis problem in figure 9, obtained through the procedure
described in [19].
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Figure 3: Limit analysis of strut net models of a masonry wall loaded by a uniformly distributed
vertical load and a concentrated horizontal force applied to the top edge of the wall. (a) The
complete net of a coarse model is formed by the pairwise connections of seven nodes placed on the
top and bottom edges of the structure. (b) The corresponding limit load multiplier λlim is equal
to 1/3, as in the limit analysis problem of the wall modeled as a continuum medium [19]. The
examined load condition is supported by struts placed above a diagonal of the panel. (c) A more
refined model of the wall is obtained by examining the pairwise connections of groups of twenty
nodes placed over the top and bottom edges of the wall. (d) Also in this case, the LP procedure
predicts λlim = 1/3, and a limit load strut net formed by top-edge struts and rays converging to
the bottom-right corner of the wall. In both the coarse and the refined models, the base reaction of
the bottom-right node displays a vertical component equal to qL and a horizontal component equal
to 1/3 qL. (The forces shown in figure are not to scale. Online version in color.)

14



1
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λ
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(c)

Figure 4: (a) Strut net modeling of a dry-jointed masonry wall under the action of self-weight
and a progressively increasing shear force. A grid of 10×12 nodes is loaded by vertical forces with
magnitude 0.05 kN applied at the inner nodes (not shown in figure); vertical forces with magnitude
of 3 kN applied on the top nodes and a horizontal force with magnitude λ applied to the right-top
corner. The LP procedure of section 3.1 predicts a limit load λlim = 14.417 kN associated to a strut
net formed by oblique and vertical struts, with the oblique struts mainly placed above the main
diagonal of the wall. The bottom-left reaction force has a vertical component of 32.47 kN and a
horizontal component of 14.13 kN. The neighbor node applies a vertical reaction of 0.077 kN and a
horizontal reaction of 0.018 kN. The remaining nodes of the bottom edge of the wall apply vertical
reactions growing from 0.1 kN to 0.5 kN. (b) Simplification of the strut net of panel (a) making use
of the loop reduction procedure presented in [3]. (c) The crack pattern experimentally observed by
Lorenco̧ et al. [34] on a physical sample is consistent with the connectivity of the limit load strut
net shown in panel (b), reproduced with permission from [33]. (The forces shown in the figure are
not to scale. Online version in color.)
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(a): na = 21, λ = 0 (b): na = 21, λlim = 0.35833

1

(a) (b)

(c): na = 81, λ = 0 (d): na = 81, λlim = 0.35906

2

(c) (d)

(e): na = 201, λ = 0 (f ): na = 201, λlim = 0.35911

3

(e) (f)

Figure 5: Strut net models of a masonry wall with one opening loaded by a uniformly distributed
vertical load q and concentrated horizontal force F . (a,b,c): Loading conditions considering only
the distributed load q, which is lumped at na = 21, 81 and 201 points, respectively (the scaling
factor of the vertical forces sq has been respectively set to 2, 8 and 20). The strut net models for the
current loading conditions have been obtained via the LP procedure presented in [30]. (b),(d),(e):
Loading conditions considering the vertical load q and a concentrated horizontal force F = λqL
applied to the top-right corner. Strut net models have been obtained through the LP procedure of
section 3.2 (the scaling factor of F has been assumed equal to one. Online version in color.)
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Figure 6: (a) Primal and dual meshes of the region placed above the arched portion of the strut
net shown in Fig. 5(b). (b) Density plot of the regularized stress component T22. The inserts show
two selected dual cells and the axial forces carried by the struts crossing such cells. (Online version
in color.) 17



(a): na = 81, λ = 0 (b): na = 81, λlim = 0.45

1

(e) (f)

(c): na = 11, λlim = 0.1667 b): na = 21, λlim = 0.1667

1

(a) (b)

Figure 7: Strut net models of a masonry wall with two openings loaded by uniformly distributed
vertical loads q and a concentrated horizontal force F . (a) Case with the load q distributed along the
overall span L of the top-edge. A strut net model is obtained through the LP procedure presented
in [30], by lumping q in correspondence to 81 points (the vertical active forces have been scaled by
a factor aq = 4). (b) Wall loaded by the same vertical forces as in panel (a), and a concentrated
horizontal force F = λqL in correspondence to the top-right edge of the wall. The limit load
multiplier λlim = 0.45 has been estimated making use of the LP procedure of section 3.2. (c)
Loading condition with two distributed loads q acting on top of the piers and two horizontal forces
F = λqb1 applied to the top-right corners of the piers. The vertical loads q have been lumped in
correspondence to na = 11 points for each pier (the vertical load q and the horizontal force F have
been scaled by factors sq = 6.67 and sF = 4, respectively). (d) Loading condition similar to that
analyzed in panel (c), obtained by setting na = 21 (sq = 13.33, sF = 4). (Online version in color.)
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(a): loading scheme

(b): na = nd = 21 (c): na = nd = 41

(d): na = nd = 101 (e): na = nd = 201

Figure 8: (a) Masonry arch loaded by a uniform vertical load on the top edge. (b-e) Strut net
models obtained for na = nd = 21, 41, 101 and 201, respectively, by setting the scale factor sa of
the vertical active forces acting on the top edge equal to 2.5, 5.0, 12.5, and 25. (Online version in
color.)
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(a): loading scheme

(b): na = nd = 21, λlim = 0.3069 (c): na = nd = 41, λlim = 0.3080

(d): na = nd = 101, λlim = 0.3083 (e): na = nd = 201, λlim = 0.3084

Figure 9: (a) Limit analysis problem of a masonry arch loaded by a uniform vertical load q acting
on the top edge and a concentrated horizontal force F = λqL applied to the top-right corner. (b-e)
Limit load strut nets obtained for na = nd = 21, 41, 101 and 201, respectively, by setting the scale
factor sa of the vertical active forces acting on the top edge equal to 2.5, 5.0, 12.5 and 25. (Online
version in color.)
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